Mixed-Radix Cooley-Tukey FFT | Mathematics of the DFT	https://www.dsprelated.com/freebooks/mdft/Mixed_Radix_Cooley_Tuk...
Mixed-Radix Cooley-Tukey FFT | Mathematics of the DFT	https://www.dsprelated.com/freebooks/mdft/Mixed_Radix_Cooley_Tuk...
Mixed-Radix Cooley-Tukey FFT
When the desired DFT length [image:] can be expressed as a product of smaller integers, the CooleyTukey decomposition provides what is called a mixed radix Cooley-Tukey FFT algorithm.A.2
Two basic varieties of Cooley-Tukey FFT are decimation in time (DIT) and its Fourier dual, decimation in frequency (DIF). The next section illustrates decimation in time.
Decimation in Time
The DFT is defined by
[image:]
where [image:] is the input signal amplitude at time [image:], and
[image:]
Note that [image:].
When [image:] is even, the DFT summation can be split into sums over the odd and even indexes of the input signal:
(A.1)
where
 and
 denote the even- and odd-indexed samples from
.
Thus, the length
 DFT is computable using two length
 DFTs. The complex factors
 are called
twiddle factors
. The splitting into sums over even and odd
time indexes is called
decimation in time
. (For
decimation in frequency
, the inverse DFT of the
spectrum
 is split into sums over even and odd
bin numbers
.)

Radix 2 FFT
When [image:] is a power of , say 	 where [image:] is an integer, then the above DIT decomposition can be performed [image:] times, until each DFT is length [image:]. A length [image:] DFT requires no multiplies.
The overall result is called a radix 2 FFT. A different radix 2 FFT is derived by performing decimation in frequency.
A split radix FFT is theoretically more efficient than a pure radix 2 algorithm [73,31] because it minimizes real arithmetic operations. The term ``split radix'' refers to a DIT decomposition that combines portions of one radix 2 and two radix 4 FFTs [22].A.3On modern general-purpose processors, however, computation time is often not minimized by minimizing the arithmetic operation count (see §A.7 below).

Radix 2 FFT Complexity is N Log N
Putting together the length [image:] DFT from the [image:] length-[image:] DFTs in a radix-2 FFT, the only multiplies
needed are those used to combine two small DFTs to make a DFT twice as long, as in Eq.[image:](A.1). Since there are approximately 	 (complex) multiplies needed for each stage of the DIT decomposition, and only 	 stages of DIT (where 	 denotes the log-base-2 of), we see that the total number of multiplies for a length [image:] DFT is reduced from 	 to 	, where [image:]means ``on the order of [image:]''. More precisely, a complexity of 	 means that given any
implementation of a length-	 radix-2 FFT, there exist a constant 	 and integer 	 such that the computational complexity satisfies
[image:]
for all
. In summary, the complexity of the radix-2 FFT is said to be ``N log N'', or
.

Fixed-Point FFTs and NFFTs
Recall (e.g., from Eq.[image:](6.1)) that the inverse DFT requires a division by [image:] that the forward DFT does not. In fixed-point arithmetic (Appendix G), and when [image:] is a power of 2, dividing by [image:] may be carried out by right-shifting [image:] places in the binary word. Fixed-point implementations of the
inverse Fast Fourier Transforms (FFT) (Appendix A) typically right-shift one place after each Butterfly stage. However, superior overall numerical performance may be obtained by right-shifting after every other butterfly stage [8], which corresponds to dividing both the forward and inverse FFT by [image:] (i.e., [image:] is implemented by half as many right shifts as dividing by [image:]). Thus, in fixed-point, numerical
performance can be improved, no extra work is required, and the normalization work (right-shifting) is spread equally between the forward and reverse transform, instead of concentrating all [image:] right-shifts in the inverse transform. The NDFT is therefore quite attractive for fixed-point implementations.
Because signal amplitude can grow by a factor of 2 from one butterfly stage to the next, an extra guard bit is needed for each pair of subsequent NDFT butterfly stages. Also note that if the DFT length [image:] is not a power of [image:], the number of right-shifts in the forward and reverse transform
[bookmark: _GoBack]| Create account.
1 of 6	09-02-2018, 12:19 PM
1 of 6	09-02-2018, 12:19 PM
image5.jpg
(primitive Nth oot of unity)

image6.jpg

image7.jpg
X(wn)

image8.jpg

image9.jpg

image10.jpg

image11.jpg
N-2

N-1
()T 3 an)e T

image12.jpg
F1

S ame T e $ a1 e,

=1 =1

image13.jpg
©k

0

¥

0

£

re)W, + WE Y w(m)W,

=1

tn

N2

image14.jpg
DFTx , { DOWNSAMPLE: ()}

image15.jpg
+ Wy - DFT g {DowNsaMPLE[SHIFT: (r)] }

image16.jpg

image17.jpg

image18.jpg

image19.jpg
N/2

image20.jpg
W = e ¥ = exp(—j2rk/N)

image21.jpg
X (wr)

image22.jpg

image110.jpg
X(wn)

image120.jpg

image130.jpg

image140.jpg

image150.jpg
N-2

N-1
()T 3 an)e T

image160.jpg
F1

S ame T e $ a1 e,

=1 =1

image170.jpg
©k

0

¥

0

£

re)W, + WE Y w(m)W,

=1

tn

N2

image180.jpg
DFTx , { DOWNSAMPLE: ()}

image190.jpg
+ Wy - DFT g {DowNsaMPLE[SHIFT: (r)] }

image200.jpg

image210.jpg

image220.jpg

image0.jpg

image23.jpg
N/2

image24.jpg
W = e ¥ = exp(—j2rk/N)

image25.jpg
X (wr)

image26.jpg

image27.jpg

image28.jpg

image270.jpg

image280.jpg

image29.jpg
K>1

image30.jpg
el

image31.jpg
lgN

image32.jpg
lgN

image33.jpg

image34.jpg

image35.jpg

image36.jpg

image330.jpg

image340.jpg

image360.jpg

image1.jpg

image37.jpg

image38.jpg

image39.jpg

image40.jpg

image380.jpg

image41.jpg
C(N)<CNIgN

image42.jpg
N>M

image400.jpg
N>M

image43.jpg

image44.jpg

image2.jpg
N-1

X(k) = E 2(n)Wh",

k=1

image45.jpg

image3.jpg

image4.jpg

