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Mixed-Radix Cooley-Tukey FFT
When the desired DFT length [image: ] can be expressed as a product of smaller integers, the CooleyTukey decomposition provides what is called a mixed radix Cooley-Tukey FFT algorithm.A.2
Two basic varieties of Cooley-Tukey FFT are decimation in time (DIT) and its Fourier dual, decimation in frequency (DIF). The next section illustrates decimation in time.
Decimation in Time
The DFT is defined by
[image: ]
where [image: ] is the input signal amplitude at time [image: ], and
[image: ]
Note that [image: ].
When [image: ] is even, the DFT summation can be split into sums over the odd and even indexes of the input signal:
(A.1)
where 
 and 
 denote the even- and odd-indexed samples from 
.
Thus, the length 
 DFT is computable using two length 
 DFTs. The complex factors
 are called 
twiddle factors
. The splitting into sums over even and odd
time indexes is called 
decimation in time
. (For 
decimation in frequency
, the inverse DFT of the
spectrum
 is split into sums over even and odd 
bin numbers
.)

Radix 2 FFT
When [image: ] is a power of , say 	 where [image: ] is an integer, then the above DIT decomposition can be performed [image: ] times, until each DFT is length [image: ]. A length [image: ] DFT requires no multiplies.
The overall result is called a radix 2 FFT. A different radix 2 FFT is derived by performing decimation in frequency.
A split radix FFT is theoretically more efficient than a pure radix 2 algorithm [73,31] because it minimizes real arithmetic operations. The term ``split radix'' refers to a DIT decomposition that combines portions of one radix 2 and two radix 4 FFTs [22].A.3On modern general-purpose processors, however, computation time is often not minimized by minimizing the arithmetic operation count (see §A.7 below).


Radix 2 FFT Complexity is N Log N
Putting together the length [image: ] DFT from the [image: ] length-[image: ] DFTs in a radix-2 FFT, the only multiplies
needed are those used to combine two small DFTs to make a DFT twice as long, as in Eq.[image: ](A.1). Since there are approximately 	 (complex) multiplies needed for each stage of the DIT decomposition, and only 	 stages of DIT (where 	 denotes the log-base-2 of 	), we see that the total number of multiplies for a length [image: ] DFT is reduced from 	 to 	, where [image: ]means ``on the order of [image: ]''. More precisely, a complexity of 	 means that given any
implementation of a length-	 radix-2 FFT, there exist a constant 	 and integer 	 such that the computational complexity  satisfies
[image: ]
for all 
. In summary, the complexity of the radix-2 FFT is said to be ``N log N'', or 
.

Fixed-Point FFTs and NFFTs
Recall (e.g., from Eq.[image: ](6.1)) that the inverse DFT requires a division by [image: ] that the forward DFT does not. In fixed-point arithmetic (Appendix G), and when [image: ] is a power of 2, dividing by [image: ] may be carried out by right-shifting [image: ] places in the binary word. Fixed-point implementations of the
inverse Fast Fourier Transforms (FFT) (Appendix A) typically right-shift one place after each Butterfly stage. However, superior overall numerical performance may be obtained by right-shifting after every other butterfly stage [8], which corresponds to dividing both the forward and inverse FFT by [image: ] (i.e., [image: ] is implemented by half as many right shifts as dividing by [image: ]). Thus, in fixed-point, numerical
performance can be improved, no extra work is required, and the normalization work (right-shifting) is spread equally between the forward and reverse transform, instead of concentrating all [image: ] right-shifts in the inverse transform. The NDFT is therefore quite attractive for fixed-point implementations.
Because signal amplitude can grow by a factor of 2 from one butterfly stage to the next, an extra guard bit is needed for each pair of subsequent NDFT butterfly stages. Also note that if the DFT length [image: ] is not a power of [image: ], the number of right-shifts in the forward and reverse transform
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